

DSLR : Dynamic to Static LiDAR Scan Reconstruction Using Adversarially Trained Autoencoder

P. Kumar*¹ , S. Sahoo*¹ , V. Shah¹ , V. Kondameedi¹ , A. Jain¹ , A. Verma¹ , C. Bhattacharyya¹ , V Vinay²³ 1 Indian Institute of Science, Bangalore, India 2AMIDC Pvt Ltd, Bangalore, India 3Chennai Mathematical Institute, Chennai, India

Code, data, video at dslrproject.github.io/dslr

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

SLAM In Dynamic Env Is An Open Problem

Most **SOTA SLAM algorithms**

→ assume a static env. → thus, **fail in dynamic env.**

For LiDAR-based SLAM, we observe that

SLAM_{Dynamic} << **SLAM**_{Stati}

We address this problem by translating dynamic LiDAR scans to corresponding static LiDAR scans.

Dynamic to Static Translation (DST) for LiDAR

Learn **mapping M, from dynamic to corresponding static scans** such that the reconstruction loss is minimized

 $min(M(\triangle) - \triangle)$ ²

3 major goals:

- **→** Accurately **reconstructing the static structures** like walls or poles. **Dyn Static**
- **→ Inpainting the occluded regions** with static background.

→ Without using segmentation information.

Challenges

- **→** Existing DST works for images **require segmentation** information.
- **→** Point cloud scan completion based methods do not work for **360° LiDAR scans**.
- **→** Existing LiDAR reconstruction methods fail to produce

SLAM-worthy reconstructions.

→ No datasets with dynamic-corresponding static pairs exists.

We attempt to address these challenges in our proposed approaches.

DSLR

a) Autoencoder for LiDAR scans.

b) Pair Discriminator

- **→** Discr. *(static, static) vs (static, dynamic)* **→** Tries to **focus on occluded regions for**
- **discrimination**, w/o segmentation.
- **→ Trained on latent**, not pixel space. **→** *Dual loss* helps train using discriminative and generative features on latent space.

c) Adversarial Model *combine module (a) and (b) in an adversarial setting.* **→** Uses **adversarial label for (static, dynamic) pair (i.e. 1)**, and adjust only encoder (in red), we *map a dynamic scan to its corresponding static scan on the latent space*.

DSLR-Seg : If Segmentation Is Available

Given a dynamic frame:

→ DSLR gives static reconstruction (top) **→** U-Net finds dynamic points (bottom)

→ Replace **dynamic points with reconstructed static points** for final output (right).

Dataset Generation

Dynamic scans in red, static scans in black. **→** (a), (b) show **overlapping random dynamic & static run.**

Build **first-of-its-kind real-world** paired datasets.

- **→** (c) corresponding pairs shown with arrows **→** (d) corresponding LiDAR scan pairs with *some alignment mismatch*
	- **→** (e) No mismatch after applying **relative pose transformation**.

→ Also, **fine-tune encoder using reconstruction loss** b/w the input dynamic(D_w) and its corresponding static scan (S_w).

→ Dynamic scans, translated to its corresponding static, are consumed by SLAM giving *pose and map output.*

baselines on all LiDAR reconstruction

(a) Dynami

→ SOTA DST methods fail on simple runs of real world datasets e.g. KITTI. **→** Our approaches **works well even on complex runs** with improved SLAM performance

tolerable by SLAM.

Sest Performi

Experiments: DST Results

Carla-6 EMD Chanfer LOI EMD Chands

9.58 4.090 88.94

3,720 65.40 0.31 1,738

65.24 0.38

 0.67

 0.20

 $-$ 397,94 623 7.049 309.64

343.98

329.38

ADMG

CHCP-VAE CHCP-GAN

> **→** We define, **SLAM Recon. Threshold** (SRT): maximum LiDAR reconstruction error

G

datasets.

Top

Side