

DSLR : Dynamic to Static LiDAR Scan Reconstruction Using Adversarially Trained Autoencoder

P. Kumar*1, S. Sahoo*1, V. Shah¹, V. Kondameedi¹, A. Jain¹, A. Verma¹, C. Bhattacharyya¹, V Vinay²³ ¹Indian Institute of Science, Bangalore, India ²AMIDC Pvt Ltd, Bangalore, India ³Chennai Mathematical Institute, Chennai, India Code, data, video at dslrproject.github.io/dslr

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

SLAM In Dynamic Env Is An Open Problem

Most SOTA SLAM algorithms

→ assume a static env. → thus. fail in dynamic env.

For LiDAR-based SLAM, we observe that

SLAM_{Dynamic} << SLAM

We address this problem by translating dynamic LiDAR scans to corresponding static LiDAR scans.

Dynamic to Static Translation (DST) for LiDAR

Learn mapping M. from dynamic to corresponding static scans such that the reconstruction loss is minimized

min(M(🖏) - 🗳)²

3 major goals:

- → Accurately reconstructing the static structures like walls or poles.
- → Inpainting the occluded regions with static background.
- -> Without using segmentation information.

Challenges

- → Existing DST works for images require segmentation information.
- → Point cloud scan completion based methods do not work for 360° LiDAR scans.
- → Existing LiDAR reconstruction methods fail to produce

SLAM-worthy reconstructions.

 \rightarrow **No datasets** with dynamic-corresponding static pairs exists.

We attempt to address these challenges in our proposed approaches.

DSLR

a) Autoencoder for LiDAR scans.

b) Pair Discriminator

- → Discr. (static, static) vs (static, dynamic)
- → Tries to focus on occluded regions for discrimination, w/o segmentation.
- → Trained on latent, not pixel space.

→ Dual loss helps train using discriminative and generative features on latent space.

c) Adversarial Model combine module (a) and (b) in an adversarial setting. → Uses adversarial label for (static,

dynamic) pair (i.e. 1), and adjust only encoder (in red), we map a dynamic scan to its corresponding static scan on the latent space.

DSLR-Seg : If Segmentation Is Available

Given a dynamic frame:

 \rightarrow DSLR gives static reconstruction (top) → U-Net finds dynamic points (bottom)

→ Replace dynamic points with reconstructed static points for final output (right).

Dataset Generation

Dynamic scans in red, static scans in black. \rightarrow (a), (b) show overlapping random dynamic & static run.

Build first-of-its-kind real-world paired datasets.

- \rightarrow (c) corresponding pairs shown with arrows \rightarrow (d) corresponding LiDAR scan pairs with some alignment mismatch
- \rightarrow (e) No mismatch after applying relative pose transformation.

(b) Autoencoder with Discriminator (a) Autoencoder Training (c) Adversarial Training → Our methods (second last block), clearly reconstruct better. of surrounding scenes clearly.

Also, fine-tune encoder using baselines on all LiDAR reconstruction reconstruction loss b/w the input metrics for simulated and real world dynamic(D.,.) and its corresponding static scan (S.,,).

Experiments: SLAM

(b) ADMG

(c) CIICF-AE IN CHICKNEE (A) CHCE-GAN

 \rightarrow Dynamic scans, translated to its corresponding static, are consumed by SLAM giving pose and map output.

 \rightarrow SOTA DST methods fail on simple runs of real world datasets e.g. KITTI. → Our approaches works well even on complex runs with improved SLAM performance

O DSLR (g) DSLR-Sep

datasets.

View

Experiments: DST Results

